Two liquids $A$ and $B$ are at $32\,^oC$ and $24\,^oC.$ When mixed in equal masses the temperature of the mixture is found to be $28\,^oC$. Their specific heats are in the ratio of
$3:2$
$2:3$
$1:1$
$4:3$
A drilling machine of $10\,KW$ power is used to drill a bore in a small aluminium block of mass $8\,kg.$ If $50\%$ of power is used up in heating the machine itself or lost to the surroundings then ........ $^oC$ is the rise in temperature of the block in $2.5\,minutes$
[specific heat of aluminium $= 0.91\,J/g\,\,^oc$ ]
A metal bal of mass $0.1\, kg$ is heated upto $500\,{}^oC$ and dropped into a vessel of heat capacity $800\, JK^{-1}$ and containing $0.5\, kg$ water. The initial temperature of water and vessel is $30\,{}^oC$. ........ $\%$ is the approximate percentage increment in the temperature of the water. [Specific heat Capacities of water and metal are, respectively $4200\, Jkg^{-1}K^{-1}$ and $400\, Jkg^{-1}K^{-1}$]
$10\; gm$ of ice cubes at $0\;^{\circ} C$ are released in a tumbler (water equivalent $55\; g$ ) at $40\;^{\circ} C$. Assuming that negligible heat is taken from the surroundings, the temperature(in $^o C$) of water in the tumbler becomes nearely $(L_f=80\; cal / g )$
A steam engine intakes $50\, g$ of steam at $100^{\circ} C$ per minute and cools it down to $20^{\circ} C$. If latent heat of vaporization of steam is $540 \,cal g ^{-1}$, then the heat rejected by the steam engine per minute is .........$\times 10^{3}$$cal.$
If mass energy equivalence is taken into account, when water is cooled to form ice, the mass of water should