- Home
- Standard 11
- Physics
13.Oscillations
medium
Two masses $m_1$ and $m_2$ are supended together by a massless spring of constant $k$. When the masses are in equilibrium, $m_1$ is removed without disturbing the system; the amplitude of vibration is

A
$m_1g / k$
B
$m_2g / k$
C
$\frac{{\left( {{m_1} + {m_2}} \right)\,g}}{k}$
D
$\frac{{\left( {{m_2} - {m_1}} \right)\,g}}{k}$
Solution
In equillibrium $F=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}$
By removing mass $m_1$
$F^{\prime}=\mathrm{m}_{2} \mathrm{g}$
$F_{\mathrm{r}}=F^{\prime}-F=\mathrm{m}_{2} \mathrm{g}-\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)$
$\mathrm{kx}=\mathrm{m}_{1} \mathrm{g} \Rightarrow \mathrm{x}=\frac{\mathrm{m}_{1} \mathrm{g}}{\mathrm{k}}$
Standard 11
Physics
Similar Questions
hard
medium