Two plates are $2\,cm$ apart, a potential difference of $10\;volt$ is applied between them, the electric field between the plates is.........$N/C$
$20$
$500$
$5$
$250$
The potential (in volts ) of a charge distribution is given by
$V(z)\, = \,30 - 5{z^2}for\,\left| z \right| \le 1\,m$
$V(z)\, = \,35 - 10\,\left| z \right|for\,\left| z \right| \ge 1\,m$
$V(z)$ does not depend on $x$ and $y.$ If this potential is generated by a constant charge per unit volume $\rho _0$ (in units of $\varepsilon _0$ ) which is spread over a certain region, then choose the correct statement
A charge $3$ coulomb experiences a force $3000$ $N$ when placed in a uniform electric field. The potential difference between two points separated by a distance of $1$ $cm$ along the field lines is.....$V$
A cathode ray tube contains a pair of parallel metal plates $1.0\, cm$ apart and $3.0\, cm$ long. A narrow horizontal beam of electron with a velocity $3 \times 10^7\, m/s$ passed down the tube midway between the plates. When a potential difference of $550\, V$ is maintained across the plates, it is found that the electron beam is so deflected that it just strikes the end of one of the plates. Then the specific charge of the electron in $C/kg$ is
The electric potential at a point $(x, y, z)$ is given by $V=-x^2y-xz^3 +4 $. The electric field at that point is
The variation of potential with distance $R$ from a fixed point is as shown below. The electric field at $R = 5\,m$ is......$volt/m$