Gujarati
Hindi
7.Gravitation
normal

Two satellites are launched at a distance $R$ from a planet of negligible radius. Both satellites are launched in the tangential direction. The first satellite launches correctly at a speed $v_0$ and enters a circular orbit. The second satellite, however, is launched at a speed $\frac {1}{2}v_0$ .  What is the minimum distance between the second satellite and the planet over the course of its orbit?

A

$\frac {1}{2}R$

B

$\frac {1}{3}R$

C

$\frac {1}{4}R$

D

$\frac {1}{7}R$

Solution

$v_{0}=\sqrt{\frac{G M}{R}}$

For satellite launches with velocity $\frac{V_{0}}{2}$

$\mathrm{T} \mathrm{E}=\mathrm{KE}+\mathrm{PE}$

$=-\frac{\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{m}\left(\frac{\mathrm{v}_{0}}{2}\right)^{2}$

$=-m v_{0}^{2}+\frac{1}{8} m v_{0}^{2}=-\frac{7}{8} m v_{0}^{2}$

By energy conservation

$(\mathrm{TE})_{\mathrm{i}}=(\mathrm{TE})_{\mathrm{f}}$

$-\frac{7}{8} \mathrm{mv}_{0}^{2}=-\frac{\mathrm{GMm}}{\mathrm{R}_{1}}+\frac{1}{2} \mathrm{mv}_{1}^{2}$

Since at lowest distance velocity is along tangential direction again.

$\therefore \mathrm{L}_{i}=\mathrm{L}_{\mathrm{f}}$

$\frac{\mathrm{mv}_{0} \mathrm{R}}{2}=\mathrm{mv}_{1} \mathrm{R}_{1}$

$\mathrm{v}_{1}=\frac{\mathrm{R}_{\mathrm{V}_{0}}}{2 \mathrm{R}_{1}}$

$-\frac{7}{8} v_{0}^{2}=-\frac{R v_{0}^{2}}{R_{1}}+\frac{1}{2}\left(\frac{R V_{0}}{2 R_{1}}\right)^{2}$

$-8 \mathrm{RR}_{1}+\mathrm{R}^{2}=-7 \mathrm{R}_{1}^{2}$

$\left(7 \mathrm{R}_{1}-\mathrm{R}\right)\left(\mathrm{R}_{1}-\mathrm{R}\right)=0$

$\mathrm{R}_{1}=\mathrm{R}_{1} \mathrm{R} / 7$

Lowest point is $\mathrm{R}_{1}=\mathrm{R} / 7$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.