Two small conducting spheres of equal radius have charges $ + 10\,\mu C$ and $ - 20\,\mu C$ respectively and placed at a distance $R$ from each other experience force ${F_1}$. If they are brought in contact and separated to the same distance, they experience force ${F_2}$. The ratio of ${F_1}$ to ${F_2}$ is

  • A

    $1:8$

  • B

    $-8:1$

  • C

    $1:2$

  • D

    $-2:1$

Similar Questions

Two small spherical balls each carrying a charge $Q = 10\,\mu C$ ($10\, micro-coulomb$) are suspended by two insulating threads of equal lengths $3\, m$ each, from a point fixed in the ceiling. It is found that in equilibrium threads are separated by an angle $120^o$ between them, as shown in the figure. What is the tension in the threads (Given : $\frac{1}{{\left( {4\pi {\varepsilon _0}} \right)}} = 9 \times {10^9}\,Nm/{C^2}$)

A point charge $q_1$ exerts force $F$ upon another point charge $q_2$. If a third charge $q_3$ be placed near the charge $q_2$, then the force that charge $q_1$ exerts on the charge $q_2$ will be

An electron is moving round the nucleus of a hydrogen atom in a circular orbit of radius $r$. The coulomb force $\overrightarrow F $ between the two is (Where $K = \frac{1}{{4\pi {\varepsilon _0}}}$)

  • [AIPMT 2003]

Four point charges $q_{A}=2\; \mu C, q_{B}=-5\; \mu C,$ $q_{C}=2\; \mu C,$ and $q_{D}=-5\;\mu C$ are located at the corners of a square $ABCD$ of side $10\; cm .$ What is the force on a charge of $1 \;\mu C$ placed at the centre of the square?

A charged particle having some mass is resting in equilibrium at a height $H$ above the centre of a uniformly charged non-conducting horizontal ring of radius $R$. The force of gravity acts downwards. The equilibrium of the particle will be stable $R$