Two small conducting spheres of equal radius have charges $ + 10\,\mu C$ and $ - 20\,\mu C$ respectively and placed at a distance $R$ from each other experience force ${F_1}$. If they are brought in contact and separated to the same distance, they experience force ${F_2}$. The ratio of ${F_1}$ to ${F_2}$ is
$1:8$
$-8:1$
$1:2$
$-2:1$
$ABC$ is a right angled triangle in which $AB = 3\,cm$ and $BC = 4\,cm$. And $\angle ABC = \pi /2$. The three charges $ + 15,\; + 12$ and $ - 20\,e.s.u.$ are placed respectively on $A$, $B$ and $C$. The force acting on $B$ is.......$dynes$
When air is replaced by a dielectric medium of constant $k$, the maximum force of attraction between two charges separated by a distance
Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is $r.$ Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become
Force between two point charges $q_1$ and $q_2$ placed in vacuum at ' $r$ ' $\mathrm{cm}$ apart is $F$. Force between them when placed in a medium having dielectric $\mathrm{K}=5$ at $\mathrm{r} / 5$ $\mathrm{cm}$ apart will be:
For regular pentagon system shown in figure, find force on $q_0$