Two springs of constant ${k_1}$and ${k_2}$are joined in series. The effective spring constant of the combination is given by

  • [AIPMT 2004]
  • A

    $\sqrt {{k_1}{k_2}} $

  • B

    $({k_1} + {k_2})/2$

  • C

    ${k_1} + {k_2}$

  • D

    ${k_1}{k_2}/({k_1} + {k_2})$

Similar Questions

Two masses ${m_1}$ and ${m_2}$ are suspended together by a massless spring of constant k. When the masses are in equilibrium, ${m_1}$ is removed without disturbing the system. Then the angular frequency of oscillation of ${m_2}$ is

A mass $\mathrm{m}$ is suspended from a spring of negligible mass and the system oscillates with a frequency $f_1$. The frequency of oscillations if a mass $9 \mathrm{~m}$ is suspended from the same spring is $f_2$. The value of $\frac{f_1}{f_{.2}}$ is_____________.

  • [JEE MAIN 2024]

The graph shown was obtained from experimental measurements of the period of oscillations $T$ for different masses $M$ placed in the scale pan on the lower end of the spring balance. The most likely reason for the line not passing through the origin is that the

Two springs, of force constants $k_1$ and $k_2$ are connected to a mass $m$ as shown. The frequency of oscillation of the mass is $f$ If both $k_1$ and $k_2$ are made four times their original values, the frequency of oscillation becomes

  • [AIEEE 2007]

The drawing shows a top view of a frictionless horizontal surface, where there are two indentical springs with particles of mass $m_1$ and $m_2$ attached to them. Each spring has a spring constant of $1200\  N/m.$ The particles are pulled to the right and then released from the  positions shown in the drawing. How much time passes before the particles are again side by side for the first time if $m_1 = 3.0\  kg$ and $m_2 = 27 \,kg \,?$