- Home
- Standard 12
- Physics
Two thin concentric hollow conducting spheres of radii $R_1$ and $R_2$ bear charges $Q_1$ and $Q_2$ respectively. If $R_1 < R_2$, then the potential of a point at a distance $r$ from the centre $(R_1 < r < R_2)$ is
$\frac{1}{{4\pi {\varepsilon _0}}}.\frac{{{Q_1} + {Q_2}}}{r}$
$\frac{1}{{4\pi {\varepsilon _0}}}.\left( {\frac{{{Q_1}}}{r} + \frac{{{Q_2}}}{{{R_2}}}} \right)$
$\frac{1}{{4\pi {\varepsilon _0}}}.\left( {\frac{{{Q_1}}}{{{R_1}}} + \frac{{{Q_2}}}{{{R_2}}}} \right)$
$\frac{1}{{4\pi {\varepsilon _0}}}.\left( {\frac{{{Q_1}}}{{{R_1}}} + \frac{{{Q_2}}}{r}} \right)$
Solution
At $\mathrm{R}_{1}<\mathrm{r}<\mathrm{R}_{2}$
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}$
$\mathrm{V}=\frac{\mathrm{kQ}_{1}}{\mathrm{r}}+\frac{\mathrm{kQ}_{2}}{\mathrm{R}_{2}}=\mathrm{k}\left(\frac{\mathrm{Q}_{1}}{\mathrm{r}}+\frac{\mathrm{Q}_{2}}{\mathrm{R}_{2}}\right)$