Vector $A$ is pointing eastwards and vector $B$ northwards. Then, match the following two columns.
Colum $I$ Colum $II$
$(A)$ $(A+B)$ $(p)$ North-east
$(B)$ $(A-B)$ $(q)$ Vertically upwards
$(C)$ $(A \times B)$ $(r)$ Vertically downwards
$(D)$ $(A \times B) \times(A \times B)$ $(s)$ None

  • A
    $( A \rightarrow p , s , B \rightarrow s , C \rightarrow q , D \rightarrow s )$
  • B
    $( A \rightarrow p , s , B \rightarrow r , C \rightarrow q , D \rightarrow s )$
  • C
    $( A \rightarrow p , s , B \rightarrow q , C \rightarrow r , D \rightarrow s )$
  • D
    $( A \rightarrow p ,  B \rightarrow s , C \rightarrow q , D \rightarrow s )$

Similar Questions

A vector ${\overrightarrow F _1}$is along the positive $X-$axis. If its vector product with another vector ${\overrightarrow F _2}$ is zero then ${\overrightarrow F _2}$ could be

If $\overrightarrow{ P }=3 \hat{ i }+\sqrt{3} \hat{ j }+2 \hat{ k }$ and $\overrightarrow{ Q }=4 \hat{ i }+\sqrt{3} \hat{ j }+2.5 \hat{ k }$ then, The unit vector in the direction of $\overrightarrow{ P } \times \overrightarrow{ Q }$ is $\frac{1}{x}(\sqrt{3} \hat{i}+\hat{j}-2 \sqrt{3} \hat{k})$. The value of $x$ is

  • [JEE MAIN 2023]

Two forces ${\vec F_1} = 5\hat i + 10\hat j - 20\hat k$ and ${\vec F_2} = 10\hat i - 5\hat j - 15\hat k$ act on a single point. The angle between ${\vec F_1}$ and ${\vec F_2}$ is nearly ....... $^o$

Projection of vector $\vec A$ on $\vec B$ is

Find the angle between two vectors with the help of scalar product.