Voltage rating of a parallel plate capacitor is $500\,V$. Its dielectric can withstand a maximum electric field of ${10^6}\,\frac{V}{m}$. The plate area is $10^{-4}\, m^2$ . What is the dielectric constant if the capacitance is $15\, pF$ ? (given ${ \in _0} = 8.86 \times {10^{ - 12}}\,{C^2}\,/N{m^2}$)
$3.8$
$6.2$
$4.5$
$8.5$
A parallel plate capacitor is charged to a potential difference of $100\,V$ and disconnected from the source of $emf$ . A slab of dielectric is then inserted between the plates. Which of the following three quantities change?
$(i)$ The potential difference
$(ii)$ The capacitance
$(iii)$ The charge on the plates
The parallel combination of two air filled parallel plate capacitors of capacitance $C$ and $nC$ is connected to a battery of voltage, $V$. When the capacitor are fully charged, the battery is removed and after that a dielectric material of dielectric constant $K$ is placed between the two plates of the first capacitor. The new potential difference of the combined system is
A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three different dielectric materials having dielectric constants ${k_1},{k_2}$ and ${k_3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in this capacitor, then its dielectric constant $k$ is given by
Putting a dielectric substance between two plates of condenser, capacity, potential and potential energy respectively
Three identical capacitors $\mathrm{C}_1, \mathrm{C}_2$ and $\mathrm{C}_3$ have a capacitance of $1.0 \mu \mathrm{F}$ each and they are uncharged initially. They are connected in a circuit as shown in the figure and $\mathrm{C}_1$ is then filled completely with a dielectric material of relative permittivity $\varepsilon_{\mathrm{r}}$. The cell electromotive force (emf) $V_0=8 \mathrm{~V}$. First the switch $S_1$ is closed while the switch $S_2$ is kept open. When the capacitor $C_3$ is fully charged, $S_1$ is opened and $S_2$ is closed simultaneously. When all the capacitors reach equilibrium, the charge on $\mathrm{C}_3$ is found to be $5 \mu \mathrm{C}$. The value of $\varepsilon_{\mathrm{r}}=$. . . .
(image)