What is unit vector ? Explain.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The vector whose magnitude is $1$ unit is called unit vector.

It represents the direction.

It doesn't have any unit or dimensions.

In Cartesian coordinate system, unit vectors of $x, y, z$ axes are $\hat{i}, \hat{j}, \hat{k}$ respectively.

As magnitude of unit vector is $1$ ,

$|\hat{i}|=|\hat{j}|=|\hat{k}|=1$

These vectors are perpendicular to each other.

Unit vector can be obtained by dividing vector with its magnitude.

Example : If unit vector of $\vec{A}$ is $\hat{n}$, then

$\hat{n}=\frac{\overrightarrow{\mathrm{A}}}{|\overrightarrow{\mathrm{A}}|}=\frac{\overrightarrow{\mathrm{A}}}{\mathrm{A}}=\frac{\text { vector }}{\text { magnitude of vector }}$

According to this equation $\vec{A}=|\vec{A}| \cdot \hat{n}$

Vector $=$ (Magnitude of vector) (Its unit vector)

E.g. : " $5 \mathrm{~N}$ force is acting in $\mathrm{X}$-axis." This can be represented as : $\overrightarrow{\mathrm{F}}=5 \hat{i} \mathrm{~N}$

885-s176

Similar Questions

A physical quantity which has a direction

Pick out the two scalar quantities in the following list :

force, angular momentum, work, current, linear momentum, electric field, average velocity, magnetic moment, relative velocity.

Angular momentum is

If $\overrightarrow A $ is $(3,\, 4)$ unit, then show that the value of its unit vector is $1$.

A vector is added to an equal and opposite vector of similar nature, forms a ........