What would be the stopping distance if the velocity of vehicle becomes three times ?
The motion of a body is given by the equation $\frac{{dv(t)}}{{dt}} = 6.0 - 3v(t)$. where $v(t)$ is speed in $m/s$ and $t$ in $\sec $. If body was at rest at $t = 0$
The displacement of a particle after time $t$ is given by $x = \left( {k/{b^2}} \right)\left( {1 - {e^{ - bt}}} \right)$ where $b$ is a constant. What is the acceleration of the particle?
The velocity versus time graph of a body moving in a straight line is as shown in the figure below
Figure gives the $x -t$ plot of a particle executing one-dimensional simple harmontc motion. Give the signs of position, velocity and acceleration variables of the particle at $t=0.3 \;s , 1.2\; s ,-1.2\; s$
The initial velocity of a particle is $u$ (at $t = 0$) and the acceleration ${n^{th}}$ is given by $at$. Which of the following relation is valid