When a constant force is applied to a body moving with constant acceleration, power does not remain constant. For power to be constant, the force has to vary with speed as follows
$F \propto \frac{1}{\upsilon }$
$F \propto \frac{1}{\sqrt \upsilon }$
$F \propto {\upsilon }$
$F \propto {\upsilon ^2}$
The bob of a pendulum of length $l$ is pulled aside from its equilibrium position through an angle $\theta $ and then released. The bob will then pass through its equilibrium position with speed $v$ , where $v$ equals
A particle is moved from $(0, 0)$ to $(a, a)$ under a force $\vec F = (3\hat i + 4\hat j)$ from two paths. Path $1$ is $OP$ and path $2$ is $OQP$. Let $W_1$ and $W_2$ be the work done by this force in these two paths respectively. Then
A force $F = - K(yi + xj)$ (where K is a positive constant) acts on a particle moving in the xy-plane. Starting from the origin, the particle is taken along the positive x-axis to the point $(a, 0)$ and then parallel to the y-axis to the point $(a, a)$. The total work done by the force F on the particles is
A $15\, g$ ball is shot from a spring gun whose spring has a force constant of $600\, N\, m$. The spring is compressed by $3\, cm$. The greatest possible velocity of the ball for this compression is ............. $\mathrm{m}/ \mathrm{s}$ $(g = 10\, m/s^2$)
Two bodies of masses $m_1$ and $m_2$ are moving with same kinetic energy. If $P_1$ and $P_2$ are their respective momentum, the ratio $\frac{P_1}{P_2}$ is equal to