When a wave travels in a medium, the particle displacement is given by : $y = a\,\sin \,2\pi \left( {bt - cx} \right)$ where $a, b$ and $c$ are constants. The maximum particle velocity will be twice the wave velocity if

  • A

    $c = \frac{1}{{\pi a}}$

  • B

    $c = \pi a$

  • C

    $b = ac$

  • D

    $b = \frac{1}{{ac}}$

Similar Questions

A cylindrical tube $(L = 120\, cm.)$ is resonant with a tuning fork of frequency $330\, Hz$. If it is filling by water then to get resonance again, minimum length of water column is  ...... $cm$  $(v_{air} = 330\, m/s)$

A person speaking normally produces a sound intensity of $40\, dB$ at a distance of $1\, m$. If the threshold intensity for reasonable audibility is $20\,dB$, the maximum distance at which he can be heard clearly is ..... $m$

In a resonance tube experiment, the first resonance is obtained for $10\, cm$ of air column and the second for $32\, cm$. The end correction for this apparatus is ....$cm$

 Two cars $A$ and $B$ are moving in the same direction with speeds $36\,km/hr$ and $54\,km/hr$ respectively. Car $B$ is ahead of $A$. If $A$ sounds horn of frequency $1000\,Hz$ and the speed of sound in air is $340\,m/s$, the frequency of sound received by the driver of car $B$ is .................. $\mathrm{Hz}$

The velocities of sound at the same pressure in two monatomic gases of densities ${\rho _1}$ and ${\rho _2}$ are $v_1$ and $v_2$ respectively. ${\rho _1}/{\rho _2} = 2$, then the value of $\frac{{{v_1}}}{{{v_2}}}$ is