When two waves of almost equal frequencies $v_1$ and $v_2$ reach at a point simultaneously, the time interval between successive maxima is
$v_1 + v_2$
$v_1 - v_2$
$\frac{1}{{{v_1} + {v_2}}}$
$\frac{1}{{{v_1} - {v_2}}}$
A string of mass $m$ and length $l$ hangs from ceiling as shown in the figure. Wave in string moves upward. $v_A$ and $v_B$ are the speeds of wave at $A$ and $B$ respectively. Then $v_B$ is
For a certain organ pipe three successive resonance frequencies are observed at $425\, Hz,$ $595\,Hz$ and $765\,Hz$ respectively. If the speed of sound in air is $340\,m/s,$ then the length of the pipe is ..... $m$
A train standing at the outer signal of a railway station blows a whistle of frequency $400\, Hz$ in still air. What is the frequency of the whistle for a platform observer when the train recedes from the platform with a speed of $10\, m/s$ ...... $Hz$ . (Speed of sound $= 340\, m/s$)
A closed organ pipe has length $L$ , the air in it is vibrating in third overtone with maximum amplitude $'a'$ . The amplitude at distance $\frac {L}{7}$ from closed end of the pipe is
Two vibrating strings of the same material but lengths $L$ and $2L$ have radii $2r$ and $r$ respectively. They are stretched under the same tension . Both the strings vibrate in their fundamental modes, the one of length $L$ with frequency $f_1$ and the other with frequency $f_2$. The ratio $\frac{f_1}{f_2}$ is given by