Which is correct about zero order reaction
Rate of reaction depends on decay constant
Rate of reaction is independent of concentration
Unit of rate constant is concentration$^{ - 1}$
Unit of rate constant is concentration$^{ - 1}$ time$^{ - 1}$
Hydrolysis of methyl acetate in aq. solution has been studied by titrating the liberated acetic acid against solidum hydroxide. The conc. of the ester at different time is given below :
Time $(t)$ $\min$ | $0$ | $30$ | $60$ | $90$ |
Con. of ester $(C)$ |
$0.850$ | $0.800$ | $0.754$ |
$0.710$ |
Show that it follows a pseudo first order reaction as the conc. of $H_2O$ remain nearly constant $(54.2\,mol\,L^{-1})$ during the course of the reaction. What is the value of $k'$ in this reaction ?
The half life for second order reaction is $30\, minutes$. If the initial concentration is $0.1\, M$ then the value of rate constant will be ............ $M^{-1}\, min^{-1}$
The formation of gas at the surface of tungsten due to adsorption is the reaction of order
Reaction : $2Br^{-} + H_2O_2 + 2H^{+} \to Br_2 + 2H_2O$
take place in two steps :
$(a)$ $Br^{-} + H^{+} + H_2O_2 \xrightarrow{{slow}} HOBr + H_2O$
$(b)$ $HOBr + Br^{-} + H^{+} \xrightarrow{{fast}} H_2O + Br_2$
The order of the reaction is
Write differential rate expression of following reaction and give its order of reaction :
$2 N _{2} O _{5} \rightarrow 4 NO _{2}( g )+ O _{2}$
$C _{4} H _{9} Cl + OH ^{-} \rightarrow C _{4} H _{9} OH + Cl ^{-}$