- Home
- Standard 11
- Chemistry
Which one of the following arrangements represents the correct order of solubilities of sparingly soluble salts $Hg_2Cl_2,\,\,Cr_2(SO_4 )_3,\,\,BaSO_4$ and $CrCl_3$ respectively ?
$BaSO_4 > Hg_2Cl_2 > Cr_2(SO_4)_3 > CrCl_3$
$BaSO_4 > Hg_2Cl_2 > CrCl_3 > Cr_2 (SO_4)_3$
$BaSO_4 > CrCl_3 > Hg_2Cl_2 > Cr_2(SO_4)_3$
$Hg_2Cl_2 > BaSO_4 > CrCl_3 > Cr_2(SO_4)_3$
Solution
$C{r_2}{(S{O_4})_3} \rightleftharpoons \mathop {2C{r^{ + 3 }}}\limits_{2s} + \mathop {3S{O_4}^{ – – }}\limits_{3s} $
${K_{sp}} = {(2s)^2}{(3s)^2} = 4{s^2} \times 27{s^3} = 108{s^5}$
$s = {\left( {\frac{{{K_{sp}}}}{{108}}} \right)^{1/5}}$
$H{g_2}C{l_2} \rightleftharpoons \mathop {2H{g^{2 + }}}\limits_{2s} + \mathop {2C{l^ – }}\limits_{2s} $
${K_{sp}} = {(2s)^2} \times {(2s)^2} = 16{x^4}$
$s = {\left( {\frac{{{K_{sp}}}}{{16}}} \right)^{1/4}}$
$BaS{O_4} \rightleftharpoons \mathop {B{a^{ + 2}}}\limits_s + \mathop {S{O_4}^{ – – }}\limits_s $
${K_{sp}} = {s^2}$
$s = \sqrt {{K_{sp}}} $
$CrC{l_3} \rightleftharpoons \mathop {C{r^{3 + }}}\limits_s + \mathop {3C{l^ – }}\limits_{3s} $
${K_{sp}} = s \times {(3s)^3} = 27\,{s^4}$
$s = {\left( {\frac{{{K_{sp}}}}{{27}}} \right)^{1/4}}$
Hence the correct order of solubilities of salts is
$\sqrt {{K_{sp}}} > {\left( {\frac{{{K_{sp}}}}{{16}}} \right)^{1/4}} > {\left( {\frac{{{K_{sp}}}}{{27}}} \right)^{1/4}} > {\left( {\frac{{{K_{sp}}}}{{108}}} \right)^{1/5}}$