Why bubbles rise in soda water bottle ?
A small spherical solid ball is dropped in a viscous liquid. Its journey in the liquid is best described in the figure drawn by:-
If a ball of steel (density $\rho=7.8 \;gcm ^{-3}$) attains a terminal velocity of $10 \;cms ^{-1}$ when falling in a tank of water (coefficient of viscosity $\eta_{\text {water }}=8.5 \times 10^{-4} \;Pa – s$ ) then its terminal velocity in glycerine $\left(\rho=12 gcm ^{-3}, \eta=13.2\right)$ would be nearly
In Millikan's oll drop experiment, what is the terminal speed of an uncharged drop of radius $2.0 \times 10^{-5} \;m$ and density $1.2 \times 10^{3} \;kg m ^{-3} .$ Take the viscosity of air at the temperature of the experiment to be $1.8 \times 10^{-5}\; Pa\; s$. How much is the viscous force on the drop at that speed? Neglect buoyancy of the drop due to atr.
A small steel ball is dropped into a long cylinder containing glycerine. Which one of the following is the correct representation of the velocity time graph for the transit of the ball?
A spherical ball of radius $1 \times 10^{-4} \mathrm{~m}$ and density $10^5$ $\mathrm{kg} / \mathrm{m}^3$ falls freely under gravity through a distance $h$ before entering a tank of water, If after entering in water the velocity of the ball does not change, then the value of $h$ is approximately:
(The coefficient of viscosity of water is $9.8 \times 10^{-6}$ $\left.\mathrm{N} \mathrm{s} / \mathrm{m}^2\right)$
Confusing about what to choose? Our team will schedule a demo shortly.