Write the following cubes in expanded form
$(7 x-4 y)^{3}$
$343 x^{3}-64 y^{3}-588 x^{2} y+336 x y^{2}$
Without actually calculating the cubes, find the value of each of the following
$\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{3}-\left(\frac{5}{6}\right)^{3}$
Find $p(-2)$ for the polynomial $p(x)=5 x^{2}-11 x+3$
Expand the following:
$\left(\frac{1}{x}+\frac{y}{3}\right)^{3}$
Without actual division, prove that $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-3 x+2$
Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$
Confusing about what to choose? Our team will schedule a demo shortly.