Write the following sets in roster form :
$\mathrm{E} =$ The set of all letters in the world $\mathrm{TRIGONOMETRY}$
$E =$ The set of all letters in the word $TRIGONOMETRY$
There are $12$ letters in the word $TRIGONOMETRY,$ out of which letters $T,$ $R$ and $O$ are repeated
Therefore, this set can be written in roster form as
$E =\{ T , R , I , G , O , N , M , E , Y \}$
State whether each of the following set is finite or infinite :
The set of numbers which are multiple of $5$
Write the following as intervals :
$\{ x:x \in R, - 4\, < \,x\, \le \,6\} $
Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:
$ 8\, .......\, A $
Consider the sets
$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$
Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:
$\phi \,....\,B$
Decide, among the following sets, which sets are subsets of one and another:
$A = \{ x:x \in R$ and $x$ satisfy ${x^2} - 8x + 12 = 0 \} ,$
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$