List $-I$ | List $-II$ | ||
$A$. | श्यानता गुणांक | $I$. | $[M L^2T^{–2}]$ |
$B$. | पुश्ढ तनाव | $II$. | $[M L^2T^{–1}]$ |
$C$. | कोणीय संवेग | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | घूर्णन गतिज ऊर्जा | $IV$. | $[M L^0T^{–2}]$ |
समीकरण $W = \frac{1}{2}K{x^2}$ में $K$ की विमा होगी
एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।
कोहरे की स्थिति में वह दूरी $d$, जहाँ से सिग्नल स्पष्ट रूप से दिखाई दे, जानने के लिए एक रेलवे इंजीनियर विमीय विश्लेषण का प्रयोग करता है। उसके अनुसार यह दूरी $d$ कोहरे के द्रव्यमान घनत्व $\rho$ सिग्नल के प्रकाश की तीव्रता $S$ (शक्ति/क्षेत्रफल) तथा उसकी आवृत्ति $f$ पर निर्भर है। यदि इंजीनियर $d$ को $S ^{1 / n}$ के समानुपाती पाता है, तब $n$ का मान है :
सूची $-I$ | सूची $-II$ |
$(a)$ धारिता, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ मुक्त आकाश की विधुत शीलता, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ मुक्त आकाश की पारगम्यता, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ विधुत क्षेत्र, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |