- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
$A$ and $B$ be $3 \times 3$ matrices such that $AB + A + B = 0$ , then
A
$(A + B)^2 = A^2 + 2AB + B^2$
B
$|A| = |B|$
C
$A^2 = B^2$
D
None
Solution
$\mathrm{AB}+\mathrm{A}+\mathrm{B}+\mathrm{I}=\mathrm{I}$
$\Rightarrow \mathrm{A}(\mathrm{B}+\mathrm{I})+\mathrm{I}(\mathrm{B}+\mathrm{I}) \Rightarrow(\mathrm{A}+\mathrm{I})(\mathrm{B}+\mathrm{I})=\mathrm{I}$
so $(\mathrm{B}+\mathrm{I}) $ and $(\mathrm{A}+\mathrm{I})$ are inverse of each other
$({\text{B}} + {\text{I}})({\text{A}} + {\text{I}}) = ({\text{A}} + {\text{I}})({\text{B}} + {\text{I}}) \Rightarrow \boxed{{\text{AB}} = {\text{BA}}}$
so $(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+2 \mathrm{AB}+\mathrm{B}^{2}$
Standard 12
Mathematics
Similar Questions
medium