$Assertion$ : When a particle moves in a circle with a uniform speed, its velocity and acceleration both changes.

$Reason$ : The centripetal acceleration in circular motion is dependent on angular velocity of the body.

  • [AIIMS 2010]
  • A

    If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.

  • B

    If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.

  • C

    If the Assertion is correct but Reason is incorrect.

  • D

    If both the Assertion and Reason are incorrect.

Similar Questions

A stone of mass $1\,kg$ is tied to end of a massless string of length $1\,m$. If the breaking tension of the string is $400\,N$, then maximum linear velocity, the stone can have without breaking the string, while rotating in horizontal plane, is $.......\,ms^{-1}$

  • [JEE MAIN 2023]

When an object is shot from the bottom of a long smooth inclined plane kept at an angle $60^{\circ}$ with horizontal. it can travel a distance $\mathrm{x}_{1}$ along the plane. But when the inclination is decreased to $30^{\circ}$ and the same object the shot with the same velocity, it can travel $x_{2}$ distance. Then $x_{1}: x_{2}$ will be

  • [NEET 2019]

For a particle in uniform circular motion, the acceleration $\vec a$ at a point $P(R,\theta)$ on the circle of radius $R$ is (Here $\theta$ is measured from the $x-$ axis)

  • [AIEEE 2010]

The angular speed of a fly wheel making $120$ revolutions/minute is

  • [AIPMT 1995]

A bob is whirled in a horizontal plane by means of a string with an initial speed of $\omega \mathrm{rpm}$. The tension in the string is $T$. If speed becomes $2 \omega$ while keeping the same radius, the tension in the string becomes:

  • [NEET 2024]