$Assertion$ : A man and a block rest on smooth horizontal surface. The man holds a rope which is connected to block. The man cannot move on the horizontal surface
$Reason$ : A man standing at rest on smooth horizontal surface cannot start walking due to absence of friction (The man is only in contact with floor as shown).
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
A horizontal force $10 \mathrm{~N}$ is applied to a block $A$ as shown in figure. The mass of blocks $A$ and $B$ are $2 \mathrm{~kg}$ and $3 \mathrm{~kg}$ respectively. The blocks slide over a frictionless surface. The force exerted by block $A$ on block $B$ is :
Consider the shown arrangement. Assume all surfaces to be smooth. If $N$ represents magnitudes of normal reaction between block and wedge, then acceleration of $M$ along horizontal equals
A system to $10$ balls each of mass $2 \; kg$ are connected via massless and unstretchable string. The system is allowed to slip over the edge of a smooth table as shown in figure. Tension on the string between the $7^{th}$ and $8^{th}$ ball is $N$ when $6^{th}$ ball just leaves the table.
A perfect smooth sphere $A$ of mass $2\ kg$ is in contact with a rectangular block $B$ of mass $4\ kg$ and vertical wall as shown in the figure. All surfaces are smooth. Find normal reaction by vertical wall on sphere $A$ .......... $N$
In the figure shown $'P'$ is a plate on which a wedge $B$ is placed and on $B$ a block $A$ of mass $m$ is placed. The plate is suddenly removed and system of $B$ and $A$ is allowed to fall under gravity. Neglecting any force due to air on $A$ and $B$, the normal force on $A$ due to $B$ is