$Assertion$ : If collision occurs between two elastic bodies their kinetic energy decreases during the time of collision.
$Reason$ : During collision intermolecular space decreases and hence elastic potential energy increases

  • A

    If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.

  • B

    If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.

  • C

    If the Assertion is correct but Reason is incorrect.

  • D

    If both the Assertion and Reason are incorrect.

Similar Questions

The bob of a pendulum of length $l$ is pulled aside from its equilibrium position through an angle $\theta $ and then released. The bob will then pass through its equilibrium position with speed $v$ , where $v$ equals

State if each of the following statements is true or false. Give reasons for your answer.

$(a)$ In an elastic collision of two bodies, the momentum and energy of each body is conserved.

$(b)$ Total energy of a system is always conserved, no matter what internal and external forces on the body are present.

$(c)$ Work done in the motion of a body over a closed loop is zero for every force in nature.

$(d)$ In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the system.

A ball of mass $m$  is dropped from a heigh $h$  on a platform fixed at the top of a vertical spring, as shown in figure. The platform is depressed by a distance $x.$  Then the spring constant is

A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $v$. The force on the body is $\frac{mv^2}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle

A rifle bullets loses $\left(\frac{1}{20}\right)^{th}$ of its velocity in passing through a plank. Assuming that the plank exerts a constant retarding force, the least number of such planks required just to stop the bullet is .............