બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
$R =\sqrt{ A ^{2}+ B ^{2}+2 ABcos \theta}$
જો $\cos \theta=1\Rightarrow \theta=0^{\circ}$ હોય, તો $R$ મહત્તમ મળે.
$\therefore R _{\max }= A + B$
જો $ |\,\vec A + \vec B\,|\, = \,|\,\vec A\,| + |\,\vec B\,| $ હોય, તો $ \vec A $ અને $ \vec B $ વચ્ચેનો ખૂણો ....... $^o$ હશે.
$3P$ અને $2P$ નું પરિણામી $R$ છે.જો પ્રથમ બળ બમણું કરતાં પરિણામી બમણું થાય,તો બંને બળ વચ્ચેનો ખૂણો ........... $^o$ હશે.
$ \hat i - 3\hat j + 2\hat k $ અને $ 3\hat i + 6\hat j - 7\hat k $ ,ના સરવાળામાં કયો સદિશ ઉમેરવાથી Y-દિશાનો એકમ સદિશ મળે?
$\overrightarrow A = 4\hat i - 3\hat j$ અને $\overrightarrow B = 6\hat i + 8\hat j$ હોય તો , $\overrightarrow A \, + \overrightarrow B $ નુ મુલ્ય અને દિશા મેળવો.
અસમાન મૂલ્યના ત્રણ સદિશોનો પરિણામી સદિશ શૂન્ય સદિશ હોઈ શકે ?