$\sin \theta=\frac{1}{2},$ then $\theta=\ldots \ldots \ldots \ldots$
$30$
$45$
$60$
$90$
$\sin \theta=\frac{1}{2} \cdot$ But, $\sin 30=\frac{1}{2} \quad \therefore \theta=30$
In $\Delta ABC , m \angle C =90$ and $\tan A =\frac{1}{\sqrt{3}},$ then $\sin A =\ldots \ldots \ldots \ldots$
Write 'True' or 'False' and justify your answer.
The value of the expression $\left(\sin 80^{\circ}-\cos 80^{\circ}\right)$ is negative.
$\frac{\sec \theta-1}{\sec \theta+1}=\ldots \ldots \ldots \ldots$
If $\triangle ABC$ is right angled at $C ,$ then the value of $\cos ( A + B )$ is
$\cos \theta=\frac{b}{\sqrt{a^{2}+b^{2}}} ;$ where, $0<\theta<90 ;$ then $\sin \theta=\ldots \ldots \ldots \ldots$
Confusing about what to choose? Our team will schedule a demo shortly.