- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
easy
In $\Delta ABC , m \angle C =90$ and $\tan A =\frac{1}{\sqrt{3}},$ then $\sin A =\ldots \ldots \ldots \ldots$
A
$\frac{\sqrt{3}}{2}$
B
$\frac{1}{\sqrt{2}}$
C
$\frac{1}{2}$
D
$\sqrt{3}$
Solution

$\tan A=\frac{1}{\sqrt{3}}$
$\therefore \frac{B C}{A C}=\frac{1}{\sqrt{3}}$
$\therefore \frac{ BC }{1}=\frac{ AC }{\sqrt{3}}=k$ (suppose) (where, $k > 0$ )
$\therefore BC =k$ and $AC =\sqrt{3} k$
But, $m \angle C =90$ $\therefore$ Hypotenuse is $\overline{ AB }$.
$\therefore AB ^{2}= BC ^{2}+ AC ^{2}$
$=k^{2}+(\sqrt{3} k)^{2}=4 k^{2}=(2 k)^{2}$
$\therefore AB =2 k$
Now, $\sin A =\frac{ BC }{ AB }=\frac{k}{2 k}=\frac{1}{2}$
OR
$\tan A=\frac{1}{\sqrt{3}}$
$\therefore A=30$
Now, $ \sin A=\sin 30=\frac{1}{2}$
Standard 10
Mathematics