$\cos \theta=\frac{1}{\sqrt{2}},$ then $\theta=\ldots \ldots \ldots \ldots$
$30$
$45$
$60$
$90$
$\cos \theta=\frac{1}{\sqrt{2}} \cdot$ But, $\cos 45=\frac{1}{\sqrt{2}} \, \therefore \theta=45$
$\tan \theta+\cot \theta=\ldots \ldots \ldots$
Prove that:
If $\tan A =\frac{3}{4},$ then $\sin A \cos A =\frac{12}{25}$
If $\sin A =\frac{1}{2},$ then the value of $\cot A$ is
$\tan (90-\theta)=\ldots \ldots \ldots$
Write 'True' or 'False' and justify your answer.
The value of the expression $\left(\cos ^{2} 23^{\circ}-\sin ^{2} 67^{\circ}\right)$ is positive.
Confusing about what to choose? Our team will schedule a demo shortly.