$\cos \theta=\frac{1}{\sqrt{2}},$ તો $\theta=\ldots \ldots \ldots \ldots$
$30$
$45$
$60$
$90$
$\cos \theta=\frac{1}{\sqrt{2}} \cdot$ But, $\cos 45=\frac{1}{\sqrt{2}} \, \therefore \theta=45$
$\sin 70=\cos \theta,$ તો $\theta=\ldots \ldots \ldots \ldots$
$\sec \theta=\frac{5}{3},$ તો $\tan \theta=\ldots \ldots \ldots \ldots$
જો $3 \cot \theta=4,$ તો $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\ldots \ldots \ldots \ldots$
જો $\sqrt{3} \tan \theta=1$ હોય, તો $\sin ^{2} \theta-\cos ^{2} \theta$નું મૂલ્ય શોધો.
સાબિત કરો :
$\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$
Confusing about what to choose? Our team will schedule a demo shortly.