$\cos 35=\ldots \ldots \ldots$
$\cos 55$
$\sin 55$
$\sec 35$
$\operatorname{cosec} 35$
$\cos 35=\sin (90-35)=\sin 55$
$2 \sin ^{2} 30 \cot 30-3 \cos ^{2} 60 \sec ^{2} 30=\ldots \ldots \ldots$
સાબિત કરો કે $\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)}{\tan \left(60^{\circ}+\theta\right) \tan \left(30^{\circ}-\theta\right)}=1$
સાબિત કરો :
$\frac{\tan A }{1 \sec A } – \frac{\tan A }{1 \sec A } = 2 \operatorname{cosec} A$
$\sin ^{2} 15+\sin ^{2} 75=\ldots \ldots \ldots \ldots$
$\sec (90-\theta)=\ldots \ldots \ldots$
Confusing about what to choose? Our team will schedule a demo shortly.