$\operatorname{cosec} 40=\ldots \ldots \ldots \ldots$
$\sin 50$
$\sec 50$
$\cot 40$
$\sin 40$
$\operatorname{cosec} 40=\sec (90-40)=\sec 50$
If $2 \sin ^{2} \theta-\cos ^{2} \theta=2$, then find the value of $\theta$.
$5 \cos A=4 \sin A,$ then $\tan A=\ldots \ldots \cdots \cdots$
Write 'True' or 'False' and justify your answer.
The value of $\sin \theta+\cos \theta$ is always greater than $1$ .
Given that $\alpha+\beta=90^{\circ},$ show that
$\sqrt{\cos \alpha \operatorname{cosec} \beta-\cos \alpha \sin \beta}=\sin \alpha$
$\sin 70=\cos \theta,$ then $\theta=\ldots \ldots \ldots \ldots$
Confusing about what to choose? Our team will schedule a demo shortly.