8. Introduction to Trigonometry
medium

If $2 \sin ^{2} \theta-\cos ^{2} \theta=2$, then find the value of $\theta$.

A

$30^{\circ}$

B

$90^{\circ}$

C

$0^{\circ}$

D

$120^{\circ}$

Solution

Given, $2 \sin ^{2} \theta-\cos ^{2} \theta=2$

$2 \sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)=2$ $\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$

$2 \sin ^{2} \theta+\sin ^{2} \theta-1=2$

$3 \sin ^{2} \theta=3$

$\sin ^{2} \theta=1$ $\left[\because \sin 90^{\circ}=1\right]$

$\sin \theta=1=\sin 90^{\circ}$

$\theta=90^{\circ}$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.