$\ldots \ldots$ is one of the zeros of $p(x)=x^{3}+7 x^{2}+11 x+5$
$1$
$5$
$-5$
$-1$
Without finding the cubes, factorise
$(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$
Factorise
$25 x^{2}+9 y^{2}+64+30 x y-48 y-80 x$
If the polynomial $a x^{3}+4 x^{2}+3 x-4$ and polynomial $x^{3}-4 x+a$ leave the same remainder when each is divided by $x-3,$ find the value of $a$.
If $x+y=12$ and $x y=27,$ find the value of $x^{3}+y^{3}$
Factorise :
$3 x^{3}-x^{2}-3 x+1$
Confusing about what to choose? Our team will schedule a demo shortly.