If $x+y=12$ and $x y=27,$ find the value of $x^{3}+y^{3}$
$756$
$780$
$126$
$263$
$x^{3}+y^{3}$
$=(x+y)^{3}-3 x y(x+y)$
$=12^{3}-3 \times 27 \times 12$
$=12\left[12^{2}-3 \times 27\right]$
$=12 \times 63=756$
Verify whether $2$ and $5$ are zeros of the polynomial $x^{2}-2 x-15$ or not.
Factorise :
$x^{3}+x^{2}-4 x-4$
Find the value of the polynomial $x^{2}-7 x+12$ at.
$x=-2$
Factorise
$x^{3}+2 x^{2}-13 x+10$
Factorise $: x^{3}-x^{2}-17 x-15$
Confusing about what to choose? Our team will schedule a demo shortly.