- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
medium
$\tan (65-\theta)-\cot (25-\theta)-\sec (55-\theta)+\operatorname{cosec}(35-\theta)=\ldots \ldots \ldots \ldots . .$ (કે જ્યાં $0 < \theta < 25)$
A
$3$
B
$1$
C
$2$
D
$0$
Solution
$\tan (65+\theta)=\cot [90-(65+\theta)]=\cot (25-\theta)$
and $\operatorname{cosec}(35+\theta)=\sec [90-(35+\theta)]=\sec (55-\theta)$
Now, $\tan (65+\theta)-\cot (25-\theta)-\sec (55-\theta)+\operatorname{cosec}(35+\theta)$
$=\cot (25-\theta)-\cot (25-\theta)-\sec (55-\theta)+\sec (55-\theta)$
$=0$
Standard 10
Mathematics
Similar Questions
જોડકા જોડો.
$1 .$ $\cos \theta$ | $a.$ $\frac{\cos \theta}{\sin \theta}$ |
$2.$ $\tan \theta$ | $b.$ $\frac{1}{\operatorname{coses} \theta}$ |
$3 .$ $\cot \theta$ | $c.$ $\frac{1}{\sec \theta}$ |
$4.$ $\sin \theta$ | $d.$ $\frac{1}{\cot \theta}$ |
$e.$ $\sin \theta \cdot \cos \theta$ |
easy