11.Thermodynamics
hard

$n$ mole a perfect gas undergoes a cyclic process $ABCA$ (see figure) consisting of the following processes.

$A \rightarrow B :$ Isothermal expansion at temperature $T$ so that the volume is doubled from $V _{1}$ to $V _{2}=2 V _{1}$ and pressure changes from $P _{1}$ to $P _{2}$

$B \rightarrow C :$ Isobaric compression at pressure $P _{2}$ to initial volume $V _{1}$

$C \rightarrow A$ : Isochoric change leading to change of pressure from $P _{2}$ to $P _{1}$

Total workdone in the complete cycle $ABCA$ is

A

$0$

B

$nRT \left(\ln 2+\frac{1}{2}\right)$

C

$nRTIn2$

D

$nRT \left(\ln 2-\frac{1}{2}\right)$

(JEE MAIN-2021)

Solution

$W _{\text {Isothermal }}= nRT \ln \left(\frac{ v _{2}}{ v _{1}}\right)$

$W _{\text {Isobaric }}= P \Delta V = nR \Delta T$

$W _{\text {Isochoric }}=0$

$W _{1}= nRT \ln \left(\frac{2 V }{ V }\right)= nRT \ln 2$

$W _{2}= nR \left(\frac{ T }{2}- T \right)=- nR \frac{ T }{2}$

$W _{3}=0$

$\Rightarrow W _{ net }= W _{1}+ W _{2}+ W _{3}$

$W _{ net }= nRT \left(\ln 2-\frac{1}{2}\right)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.