$R$ त्रिज्या के वृत्त पर $q$ परिमाण के $12$ घनात्मक आवेश समान दूरी पर रखे गए। एक $+Q$ आवेश को केन्द्र में रखा गया। यदि $q$ आवेशों में से एक को निकाल दिया जाए तो $Q$ पर बल क्या होगा ?
शून्य
$\frac{q Q}{4 \pi \varepsilon_0 R^2}$, निकाले गए आवेश के स्थान से दूर
$\frac{11 q Q}{4 \pi \varepsilon_0 R^2}$, निकाले गए आवेश के स्थान से दूर
$\frac{q Q}{4 \pi \varepsilon_0 R^2}$, निकाले गए आवेश के स्थान की ओर
चार एकसमान लोलकों को $100 gm$ द्रव्यमान के गेंद को $20 \,cm$ के धागे से बाँधकर बनाया गया है |इन चारों लोलकों को एक ही बिन्दु से लटकाया जाता है | प्रत्येक गेंद को $Q$ आवेश दिया जाता है जिसके परिणामस्वरुप सारी गेंदे एक दूसरे से दूर हो जाती हैं | प्रत्येक धागा उर्ध्वाधर से $45^{\circ}$ का कोण बनाता है $\mid Q$ का मान लगभग ................. $\mu C$ होगा? $(\frac{1}{4 \pi \varepsilon_0}=9 \times 10^4 \,Sl$ इकाई में )
तीन बिन्दु आवेश एक समबाहु त्रिभुज के शीर्षों पर रखे गये हैं। केवल स्थिर विद्युतीय बल को कार्यरत मानते हुये
दो बिन्दु आवेशों $Q$ व $ - Q$ जो $d$ दूरी पर हैं, के बीच लगने वाले आकर्षण बल का मान ${F_e}$ है। जब इन आवेशों को दो एकसमान गोलों पर जिसकी त्रिज्या $R = 0.3\,d$, एवं जिनके केन्द्र के बीच की दूरी $d$ मीटर है, रख दिया जाता है, तो उनके बीच कार्य करने वाले आकर्षण बल का मान है
दो स्थिर इलेक्ट्रॉनों, जिनके बीच की दूरी $'2d'$ है, के बीच इन्हें मिलाने वाली रेखा के मध्यबिन्दु पर तीसरा आवेश प्रोटॉन रखा है। इस प्रोटॉन को किसी लघु दूरी $x ( x < d )$ तक दोनों इलेक्ट्रॉनों को मिलाने वाली रेखा के लम्बवत् विस्थापित किया गया है। इसके कारण यह प्रोटॉन सरल आवर्त गति करने लगता है, जिसकी कोणीय आवत्ति होती है: $( m =$ आवेशित कण की संहति $)$
तीन एक समान आवेश प्रत्येक $2\,C$ से आवेशित गेंदो को चित्रानुसार प्रत्येक $2\,m$ लम्बे रेशम के धागों से बांधकर उभयनिप्ट बिन्दु $P$ से लटकाया गया है। तीनों गेंदे $1\,m$ भुजा के समबाहु त्रिभुज का निर्माण करती है।किसी एक आवेशित गेंद पर लग रहे कुल बल तथा किन्ही दो आवेशित गेंदो के बीच के परस्पर बल का अनुपात होगा-