लम्बाई $l$ की दो द्रव्यमानहीन डोरियो द्वारा एक उभयनिष्ठ बिन्दु से दो एकसमान आवेशित गोले लटकाये गये है, जों कि प्रारम्भ में दूरी $d(d$ $ < < l)$ पर अपनें अन्योन्य विकषर्ण के कारण है। दोंनों गोलों से आवेश एक स्थिर दर से लीक होना प्रारम्भ करता है। इसके परिणाम स्वरूप आवेश एक दूसरे की ओर $v$ वेग से गति करना प्रारम्भ करते है। तब दोनों के बीच दूरी $x$ के फलन के रूप में
$v \propto x$
$v \propto {x^{ - \frac{1}{2}}}$
$\;v \propto {x^{ - 1}}$
$\;v \propto {x^{\frac{1}{2}}}$
चार समान परिमाण के बिन्दु धनात्मक $(+ve)$ आवेशों को एक दृढ़ (Rigid) वर्गाकार फ्रेम के चारों कोनों पर रखा गया है। फ्रेम का तल $z$-अक्ष के लम्बवत् (Perpendicular) है। अगर एक ऋणात्मक $(-ve)$ बिन्दु आवेश को फ्रेम से $z$ दूरी पर $(z << L)$
दो आवेशों $\mathrm{q}_1$ व $\mathrm{q}_2$ को $\mathrm{K}$ परावैद्युतांक वाले माध्यम में एक दूसरे से 'd' दूरी पर रखा गया है। समान स्थिर वैद्युत बल के लिए वायु में दोनों आवेशों के बीच समतुल्य दूरी क्या होगी ?
हाइड्रोजन परमाणु में, $r$ त्रिज्या की कक्षा में एक इलेक्ट्रॉन नाभिक के चारो ओर चक्कर लगाता है इनके मध्य कूलॉम बल $\vec F$ है:
(जहाँ $K = \frac{1}{{4\pi {\varepsilon _0}}}$)
सरकंडे ( पिथ) की दो बॉलों (गोलियों) पर समान (बराबर) आवेश है। इन्हें समान लम्बाई की डोरियों (धागे) से एक बिन्दु से लटकाया गया है। संतुलन की अवस्था में इनके बीच की दूसरी $r$ है। दोनों डोरियों को उनकी आधी लम्बाई पर कस कर बाँध दिया जाता है। अब संतुलन की स्थिति में दोनों बॉलों के बीच की दूरी होगा: $V$
एक धातु के ठोस पृथक्कीकृत गोलाकार पर $ + Q$ आवेश दिया गया है। गोलाकार पर आवेश का वितरण