$\overrightarrow{ A }=4 \hat{ i }+3 \hat{ j }$ and $\overrightarrow{ B }=4 \hat{ i }+2 \hat{ j }$. Find a vector parallel to $\overrightarrow{ A }$ but has magnitude five times that of $\vec{B}$.
$\sqrt{20}(2 \hat{ i }+3 \hat{ j })$
$\sqrt{20}(4 \hat{ i }+3 \hat{ j })$
$\sqrt{20}(2 \hat{ i }+\hat{ j })$
$\sqrt{10}(2 \hat{ i }+\hat{ j })$
A particle has displacement of $12 \,m$ towards east and $5 \,m$ towards north then $6 \,m $ vertically upward. The sum of these displacements is........$m$
Match List$- I$ with List$- II.$
$[Image]$
Choose the correct answer from the options given below :
The magnitude of a given vector with end points $ (4, -4, 0)$ and $(-2, -2, 0)$ must be
A body is at rest under the action of three forces, two of which are ${\vec F_1} = 4\hat i,\,{\vec F_2} = 6\hat j,$ the third force is
Two vectors $\dot{A}$ and $\dot{B}$ are defined as $\dot{A}=a \hat{i}$ and $\overrightarrow{\mathrm{B}}=\mathrm{a}(\cos \omega t \hat{\mathrm{i}}+\sin \omega t \hat{j}$ ), where a is a constant and $\omega=\pi / 6 \mathrm{rad} \mathrm{s}^{-1}$. If $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=\sqrt{3}|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|$ at time $t=\tau$ for the first time, the value of $\tau$, in, seconds, is. . . . . .