$\overrightarrow{ A }=4 \hat{ i }+3 \hat{ j }$ and $\overrightarrow{ B }=4 \hat{ i }+2 \hat{ j }$. Find a vector parallel to $\overrightarrow{ A }$ but has magnitude five times that of $\vec{B}$.
$\sqrt{20}(2 \hat{ i }+3 \hat{ j })$
$\sqrt{20}(4 \hat{ i }+3 \hat{ j })$
$\sqrt{20}(2 \hat{ i }+\hat{ j })$
$\sqrt{10}(2 \hat{ i }+\hat{ j })$
If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is
Magnitude of vector which comes on addition of two vectors, $6\hat i + 7\hat j$ and $3\hat i + 4\hat j$ is
For the resultant of the two vectors to be maximum, what must be the angle between them....... $^o$
The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.
[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$
What displacement must be added to the displacement $25\hat i - 6\hat j\,\,m$ to give a displacement of $7.0\, m$ pointing in the $X- $direction