$\overrightarrow{ A }=4 \hat{ i }+3 \hat{ j }$ and $\overrightarrow{ B }=4 \hat{ i }+2 \hat{ j }$. Find a vector parallel to $\overrightarrow{ A }$ but has magnitude five times that of $\vec{B}$.
$\sqrt{20}(2 \hat{ i }+3 \hat{ j })$
$\sqrt{20}(4 \hat{ i }+3 \hat{ j })$
$\sqrt{20}(2 \hat{ i }+\hat{ j })$
$\sqrt{10}(2 \hat{ i }+\hat{ j })$
The sum of three forces ${\vec F_1} = 100\,N,{\vec F_2} = 80\,N$ and ${\vec F_3} = 60\,N$ acting on a particle is zero. The angle between $\vec F_1$ and $\vec F_2$ is nearly .......... $^o$
On an open ground, a motorist follows a track that turns to his left by an angle of $60^{°}$ after every $500\; m$. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.
The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is:
If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is