$\overrightarrow{ A }=4 \hat{ i }+3 \hat{ j }$ and $\overrightarrow{ B }=4 \hat{ i }+2 \hat{ j }$. Find a vector parallel to $\overrightarrow{ A }$ but has magnitude five times that of $\vec{B}$.

  • A

    $\sqrt{20}(2 \hat{ i }+3 \hat{ j })$

  • B

    $\sqrt{20}(4 \hat{ i }+3 \hat{ j })$

  • C

    $\sqrt{20}(2 \hat{ i }+\hat{ j })$

  • D

    $\sqrt{10}(2 \hat{ i }+\hat{ j })$

Similar Questions

If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is

Magnitude of vector which comes on addition of two vectors, $6\hat i + 7\hat j$ and $3\hat i + 4\hat j$ is

For the resultant of the two vectors to be maximum, what must be the angle between them....... $^o$

The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.

[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$

  • [JEE MAIN 2021]

What displacement must be added to the displacement $25\hat i - 6\hat j\,\,m$ to give a displacement of $7.0\, m$ pointing in the $X- $direction