$R$ ત્રિજ્યા ધરાવતા એક ગોલીય કવચ પર નિયમિત પૃષ્ઠ વીજભાર ઘનતા $\sigma$ છે. ગોલીય કવચની સપાટી ઉપર કોઈ પણ બિંદુ આગળ વિદ્યુતક્ષેત્ર. . . . . થશે.

  • [JEE MAIN 2024]
  • A

    $\sigma / \epsilon_0 R$

  • B

    $\sigma / 2 \in_0$

  • C

    $\sigma / \epsilon_0$

  • D

    $\sigma / 4 \in_0$

Similar Questions

આકૃતીમાં દર્શાવ્યા મુજબ ત્રણ અનંત લંબાઇથી પ્લેટોને મુકેલ છે તો $P$ બિંદુ આગળ વિદ્યુત ક્ષેત્ર....

સમાન વિરૂદ્ધ નિશાની ધરાવતી પૃષ્ઠ વિદ્યુતભાર ઘનતા ($\sigma$ $= 26.4 \times  10^{-12} \ C/m^2$) વાળી બે સમાંતર વિશાળ પાતળી ધાતુની તકતી છે. આ તકતી વચ્ચેનું વિદ્યુતક્ષેત્ર ........$N/C$ છે.

એક ગોળા પર એકસમાન વિજભાર પથરાયેલ છે તેની વિજભાર ઘનતા નીચે મુજબ આપવામાં આવે છે.

$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$,  $r < R$ માટે

$\rho (r)\,=\,0$, $r\, \ge \,R$ માટે

જ્યાં $r$ એ વિજભાર વિતરણના કેન્દ્રથી અંતર અને $\rho _0$ અચળાંક છે. $(r < R)$ ના અંદરના બિંદુ પાસે વિદ્યુતક્ષેત્ર કેટલું મળે?

  • [JEE MAIN 2014]

પરમાણુ માટેના પ્રારંભિક મોડેલમાં, $Ze$ વિદ્યુતભાર ધરાવતું ધન વિધુતભારિત બિંદુવતુ ન્યુક્લિયસ તેની આસપાસ $R$ ત્રિજ્યા સુધી નિયમિત ઘનતાના ઋણ વિધુતભાર વડે ઘેરાયેલું છે. સમગ્રપણે પરમાણુ તટસ્થ છે. આ મૉડેલ માટે ન્યુક્લિયસથી $r$ અંતરે વિધુતક્ષેત્ર કેટલું હશે ?

સમાન અને વિરૂદ્ધ વિદ્યુતભારની ઘનતા $\sigma$ વાળી બે અને સમાંતર તકતીઓ એકબીજાથી અંતરે આવેલી છે. તકતીઓના વચ્ચે આવેલ બિંદુ આગળ વિદ્યુતક્ષેત્ર ......... છે.