4-1.Complex numbers
medium

$\left( {\frac{1}{{1 - 2i}} + \frac{3}{{1 + i}}} \right)\,\,\left( {\frac{{3 + 4i}}{{2 - 4i}}} \right) = $

A

$\frac{1}{2} + \frac{9}{2}i$

B

$\frac{1}{2} - \frac{9}{2}i$

C

$\frac{1}{4} - \frac{9}{4}i$

D

$\frac{1}{4} + \frac{9}{4}i$

Solution

(d)$\left( {\frac{1}{{1 – 2i}} + \frac{3}{{1 + i}}} \right)\,\,\left( {\frac{{3 + 4i}}{{2 – 4i}}} \right)$
$ = \left[ {\frac{{1 + 2i}}{{{1^2} + {2^2}}} + \frac{{3 – 3i}}{{{1^2} + {1^2}}}} \right]\,\left[ {\frac{{6 – 16 + 12i + 8i}}{{{2^2} + {4^2}}}} \right]$
$ = \left( {\frac{{2 + 4i + 15 – 15i}}{{10}}} \right)\,\,\left( {\frac{{ – 1 + 2i}}{2}} \right)$
$ = \frac{{(17 – 11i)( – 1 + 2i)}}{{20}} = \frac{{5 + 45i}}{{20}} = \frac{1}{4} + \frac{9}{4}i$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.