4-1.Complex numbers
normal

$a + ib > c + id$ તોજ સમજાવી શકાય જો. . . .

A

$b = 0,c = 0$

B

$b = 0,d = 0$

C

$a = 0,c = 0$

D

$a = 0,d = 0$

Solution

(b)$a + ib > c + id$, it is defined if and only if imaginary parts must be equal to zero.
Therefore $ib = id = 0$==> $b = d = 0$$(\because i \ne 0)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.