${7^{th}}$ term of an $A.P.$ is $40$, then the sum of first $13$ terms is
$53$
$520$
$1040$
$2080$
Find the $17^{\text {th }}$ and $24^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=4 n-3$
If all interior angle of quadrilateral are in $AP$ . If common difference is $10^o$ , then find smallest angle ?.....$^o$
The houses on one side of a road are numbered using consecutive even numbers. The sum of the numbers of all the houses in that row is $170$ . If there are at least $6$ houses in that row and $a$ is the number of the sixth house, then
Sum of the first $p, q$ and $r$ terms of an $A.P.$ are $a, b$ and $c,$ respectively. Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Write the first five terms of the following sequence and obtain the corresponding series :
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n\,>\,2$