${7^{th}}$ term of an $A.P.$ is $40$, then the sum of first $13$ terms is
$53$
$520$
$1040$
$2080$
The interior angles of a polygon are in $A.P.$ If the smallest angle be ${120^o}$ and the common difference be $5^o$, then the number of sides is
Let $a_n$ be a sequence such that $a_1 = 5$ and $a_{n+1} = a_n + (n -2)$ for all $n \in N$, then $a_{51}$ is
Find the $20^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n(n-2)}{n+3}$
If the sum of a certain number of terms of the $A.P.$ $25,22,19, \ldots \ldots .$ is $116$ Find the last term
Write the first five terms of the following sequence and obtain the corresponding series :
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n\,>\,2$