किसी समान्तर श्रेणी का $7$ वाँ पद $40$ है, तो श्रेणी के प्रथम $13$ पदों का योग होगा
$53$
$520$
$1040$
$2080$
यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :
माना $S _{ n }$ एक समान्तर श्रेढ़ी के प्रथम $n$ पदों के योग को दर्शाता है। यदि $S_{4}=16$ तथा $S_{6}=-48$ है, तो $S_{10}$ बराबर है
यदि ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ और $a,\;b,\;c$ गुणोत्तर श्रेणी में हैं, तो $x, y$और $z$ होंगे
यदि समीकरण ${x^3} - 12{x^2} + 39x - 28 = 0$ के मूल समान्तर श्रेणी में हों, तो श्रेणी का सार्वान्तर होगा
यदि किसी चतुर्भुज के कोण समान्तर श्रेणी में हैं और उनका सार्वअन्तर ${10^o}$ हो, तो चतुर्भुज के कोण होंगे