Gujarati
6.Permutation and Combination
hard

$\sum\limits_{r = 0}^m {^{n + r}{C_n} = } $

A

$^{n + m + 1}{C_{n + 1}}$

B

$^{n + m + 2}{C_n}$

C

$^{n + m + 3}{C_{n - 1}}$

D

None of these

Solution

(a) Since $^n{C_r}{ = ^n}{C_{n – r}}$ and $^n{C_{r – 1}}{ + ^n}{C_r}{ = ^{n + 1}}{C_r}$

we have $\sum\limits_{r = 0}^m {^{n + r}{C_n}} = \sum\limits_{r = 0}^m {^{n + r}{C_r}} { = ^n}{C_0}{ + ^{n + 1}}{C_1}{ + ^{n + 2}}{C_2} + ……{ + ^{n + m}}{C_m}$

$ = [1 + (n + 1)]{ + ^{n + 2}}{C_2}{ + ^{n + 3}}{C_3} + ……..{ + ^{n + m}}{C_m}$

${ = ^{n + m + 1}}{C_{n + 1}}$                $[\because {\;^n}{C_r}{ = ^n}{C_{n – r}}]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.