${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $
${2^n}$
$n.\,\,{2^n}$
$n.\,\,{2^{n - 1}}$
$n.\,\,{2^{n + 1}}$
The sum of last eight consecutive coefficients in the expansion of $(1+x)^{15}$ is
If ${a_r}$ is the coefficient of ${x^r}$, in the expansion of ${(1 + x + {x^2})^n}$, then ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $
The coefficient of $t^{50}$ in $(1 + t^2)^{25} (1 + t^{25}) (1 + t^{40}) (1 + t^{45}) (1 + t^{47})$ is
Let $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ then $a _{1}+ a _{3}+ a _{5}+\ldots+ a _{37}$ is equal to
If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals