The value of $^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ is
${2^{4n - 2}} + {( - 1)^n}{2^{2n - 1}}$
${2^{4n - 2}} + {2^{2n - 1}}$
${2^{2n - 1}} + {( - 1)^n}\,{2^{4n - 2}}$
None of these
For $x\, \in \,R\,,\,x\, \ne \, - 1,$ if ${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ....{x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i\,}{\,x^i}} ,$ then $a_{17}$ is equal to
$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ is equal to
If $n$ be a positive integer such that $n \ge 3$, then the value of the sum to $n$ terms of the series $1 . n - \frac{{\left( {n\, - \,1} \right)}}{{1\,\,!}} (n - 1) + \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)}}{{2\,\,!}} (n - 2) $$- \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)\,\,\left( {n\, - \,3} \right)}}{{3\,\,!}} (n - 3) + ......$ is
$(2n + 1) (2n + 3) (2n + 5) ....... (4n - 1)$ is equal to :
If number of terms in the expansion of ${(x - 2y + 3z)^n}$ are $45$, then $n=$