$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $

  • A

    $3abc + {a^3} + {b^3} + {c^3}$

  • B

    $3abc - {a^3} - {b^3} - {c^3}$

  • C

    $abc - {a^3} + {b^3} + {c^3}$

  • D

    $abc + {a^3} - {b^3} - {c^3}$

Similar Questions

The number of values of $k $ for which the system of equations $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ has infinitely many solutions, is

  • [IIT 2002]

$\left| {\,\begin{array}{*{20}{c}}{13}&{16}&{19}\\{14}&{17}&{20}\\{15}&{18}&{21}\end{array}\,} \right| = $

In a $\Delta ABC,$ if $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is

Let $S$ be the set of all $\lambda \in \mathrm{R}$ for which the system of linear equations

$2 x-y+2 z=2$

$x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

has no solution. Then the set $S$

  • [JEE MAIN 2020]