$\left| {\,\begin{array}{*{20}{c}}5&3&{ - 1}\\{ - 7}&x&{ - 3}\\9&6&{ - 2}\end{array}\,} \right| = 0$, then $ x$ is equal to

  • A

    $3$

  • B

    $5$

  • C

    $7$

  • D

    $9$

Similar Questions

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{10!}&{11!}&{12!}\\{11!}&{12!}&{13!}\\{12!}&{13!}&{14!}\end{array}\,} \right|$ is

If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ;  $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is

  • [JEE MAIN 2019]

Consider the following system of questions $\alpha x+2 y+z=1$  ;  $2 \alpha x+3 y+z=1$  ;  $3 x+\alpha y+2 z=\beta$ . For some $\alpha, \beta \in R$. Then which of the following is NOT correct.

  • [JEE MAIN 2023]

For non zero, $a,b,c$ if $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $

$\left| {\,\begin{array}{*{20}{c}}{a - 1}&a&{bc}\\{b - 1}&b&{ca}\\{c - 1}&c&{ab}\end{array}\,} \right| = $