$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $

  • A

    $0$

  • B

    $187$

  • C

    $354$

  • D

    $54$

Similar Questions

If $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
  {\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\ 
  {\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\ 
  {\sin \left( {\alpha  + \beta } \right)}&{\sin \left( {\beta  + \gamma } \right)}&{\sin \left( {\gamma  + \alpha } \right)} 
\end{array}} \right|$ and $f(10) = 10$ then $f(\pi)$ is equal to

Which of the following is correct?

$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ is not divisible by

The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if

If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then